utils.integrands.gaussian module¶
- class DiagonalGaussianIntegrand(*args, **kwargs)[source]¶
Bases:
utils.integrands.abstract.Integrand
N-dimensional gaussian with a diagonal covariance matrix
- Parameters
mu (float or torch.Tensor) – Mean of the gaussian. Either a scalar or a vector of size d
s (float or torch.Tensor) – Standard deviation of the gaussian. Either a scalar or a vector of size d
norm (float or torch.Tensor) – Prefactor of the gaussian. Must be a scalar.
device (torch.device) – Default device where the parameters are stored
Notes
Correct value in 2D with standard params: 0.031415898(81)
- class KnownGaussianIntegrand(*args, **kwargs)[source]¶
Bases:
utils.integrands.abstract.KnownIntegrand
,utils.integrands.gaussian.DiagonalGaussianIntegrand
N-dimensional guassian integrand whose integral over the unit hypercube is provided using the Error Function as implemented in pytorch
- Parameters
mu (float or torch.Tensor) – Mean of the gaussian. Either a scalar or a vector of size d
s (float or torch.Tensor) – Standard deviation of the gaussian. Either a scalar or a vector of size d
norm (float or torch.Tensor) – Prefactor of the gaussian. Must be a scalar.
device (torch.device) – Default device where the parameters are stored
Notes
Correct value in 2D with standard params: 0.031415898(81)
- class RegulatedDiagonalGaussianIntegrand(*args, **kwargs)[source]¶
Bases:
utils.integrands.abstract.RegulatedIntegrand
,utils.integrands.gaussian.DiagonalGaussianIntegrand
N-dimensional regulated gaussian with a diagonal covariance matrix
- Parameters
mu (float or torch.Tensor) – Mean of the gaussian. Either a scalar or a vector of size d
s (float or torch.Tensor) – Standard deviation of the gaussian. Either a scalar or a vector of size d
norm (float or torch.Tensor) – Prefactor of the gaussian. Must be a scalar.
reg (float) – regularization constant
device (torch.device) – Default device where the parameters are stored
Notes
Correct value in 2D with standard params: 0.031416898(81)